Larsucosterol for Treatment of Severe Alcohol-associated Hepatitis — Impact of Hospitalization-to-Treat Time

<u>Stein L</u>¹, Shiffman M², Da B³, Goel A⁴, Kwong A⁴, Moreno C⁵, Nicoll A⁶, Mehta A⁷, Louvet A⁸, Flamm S⁹, Pyrsopoulos N¹⁰, Satapathy S¹¹, Kuo A¹², Ganger D¹³, Aloman C¹⁴, Strasser SI¹⁵, Tse E¹⁶, Russo MW¹⁷, Rockey DC¹⁸, Gray M¹⁹, Mitchell M²⁰, Thursz M²¹, Krebs W²², Scott D²³, Blevins C²³, Ellis D²³, Brown J²³, Sussman NL²³, Lin WQ²³

1. Piedmont Transplant Institute, 2. Bon Secours Liver Institute, 3. Northwell Health (now Merck), 4. Stanford University, 5. Université Libre de Bruxelles, 6. Eastern Health and ECRU, 7. Methodist Liver Institute, Dallas, 8. University Hospital of Lille, 9. Rush University, 10. Rutgers University (now NYU), 11. Northwell Health, 12. Cedars Sinai Medical Center, 13. Northwestern University, 14. Rush University (now Westchester Medical Center), 15. Royal Prince Alfred Hospital, 16. Royal Adelaide Hospital, 17. Atrium Health Wake Forest, 18. Medical University of S. Carolina, 19. University of Alabama, 20. University of Texas Southwestern, 21. Imperial College, 22. Consultant, 23. DURECT Corporation (Sponsor)

Poster #3040 and #3104 for additional information on AHFIRM

Conflict of Interest

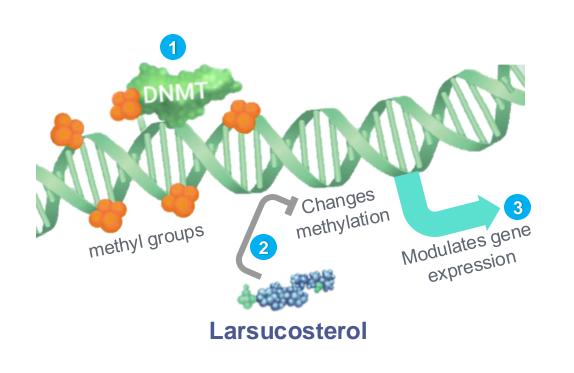
Research

DURECT, Ocelot, River 2 Renal, Akero, Versantis, Novo Nordisk

• Consultant

Intercept, Orphalan, Mallinckrodt

Speaker

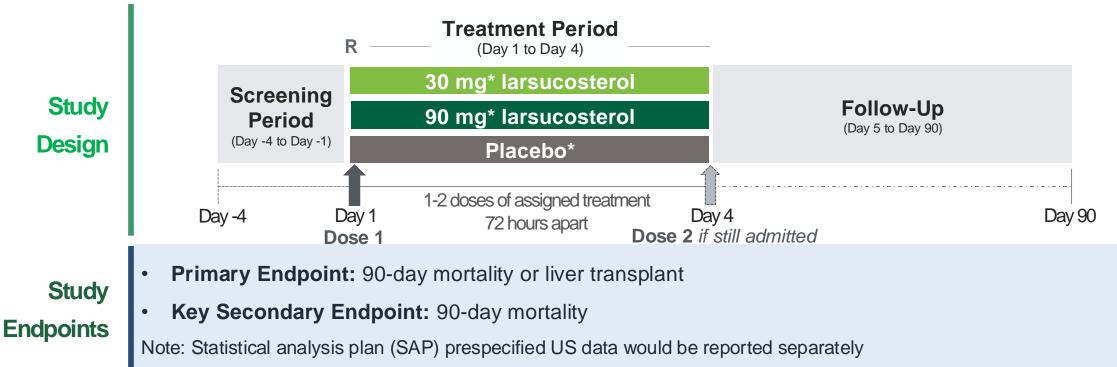

AbbVie, Gilead, Intercept, Ipsen, Madrigal

The AHFIRM Trial was sponsored by DURECT Corporation

Larsucosterol for Alcohol-associated Hepatitis (AH)

Severe AH: an Unmet Medical Need

Alcohol Induces Epigenetic Changes: DNA methyltransferase (DNMT) activities and DNA methylation are altered in the livers of patients with AH


- Aberrant DNA methylation disrupts cellular functions and interactions, resulting in liver injury and failure¹⁻⁵
- 2 Larsucosterol inhibits DNMTs, modulates DNA methylation and transcription
- 3 Improves cellular functions, including reducing lipid accumulation, regulating immune and oxidative responses, inhibiting cell death, and promoting liver regeneration.

1. Liu et al., Exp Mol Pathol 2014;97(2):234-240; 2. Shen et al., Exp Mol Pathol. 2015;99(2):326-329; 3. Argemi et al., Nat Commun. 2019;10(1):3126; 4. Niinep et al., Front Genet. 2021;12:750142; 5. Zheng et al., Int J Mol Sci. 2023;24(12):10130; 6. Wang Y, Journal of Lipid Research. 2021; 62: 100063

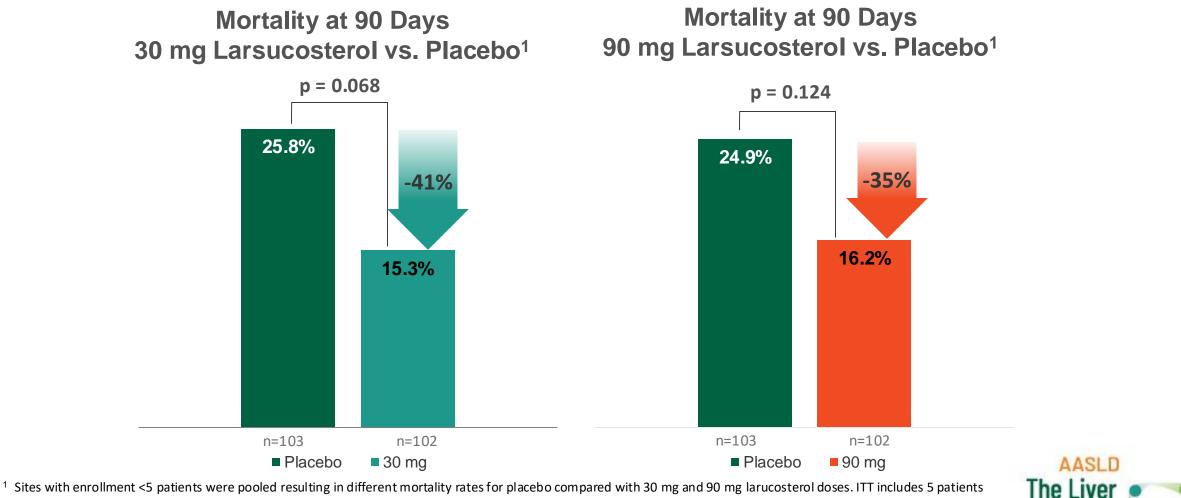
AHFIRM Trial Design

- Key Inclusion Criteria: Severe AH subjects with MDF score ≥ 32 and MELD scores 21-30
- 307 subjects, enrolled from 62 sites in US, EU, AU, and UK, randomized to three groups in a 1:1:1 ratio

*All subjects receive supportive care, which for placebo subjects may include methylprednisolone capsules at the investigatos' discretion. To maintain blinding, subjects in the larsucosterol arms received matching placebo capsules if the investigator prescribed steroids. MDF = Maddrey's Discriminant Function; R = randomized

Enrollment by Treatment Group & Region

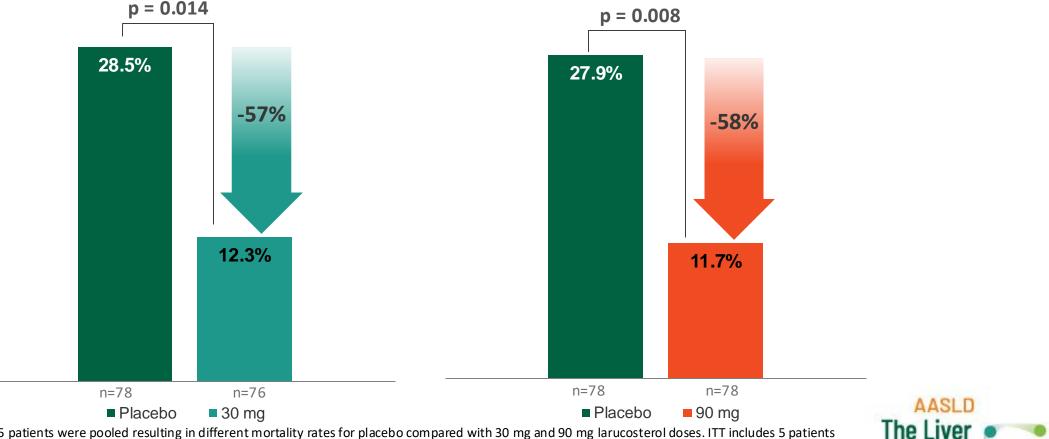
.


The Live Meeting

N (%)	Placebo	Larsucosterol 30 mg	Larsucosterol 90 mg
Total	102	99	101
US	77 (75.5)	73 (73.7)	77 (76.2)
EU	7 (6.9)	11 (11.1)	8 (7.9)
UK	1 (1.0)	5 (5.1)	2 (2.0)
AU	17 (1.7)	10 (10.1)	14 (13.9)

The trial did not meet statistical significance for the primary endpoint, 90-day death or liver transplant

Reduction of 90-Day Mortality – Global (ITT) •



Meeting

with missing 90-day outcome data. The analyses were adjusted by the method of multiple imputations to account for these subjects.

Reduction of 90-Day Mortality – U.S. Patients (ITT)

Mortality at 90 Days – U.S. Patients 30 mg Larsucosterol vs. Placebo¹

Mortality at 90 Days – U.S. Patients

90 mg Larsucosterol vs. Placebo¹

Meeting

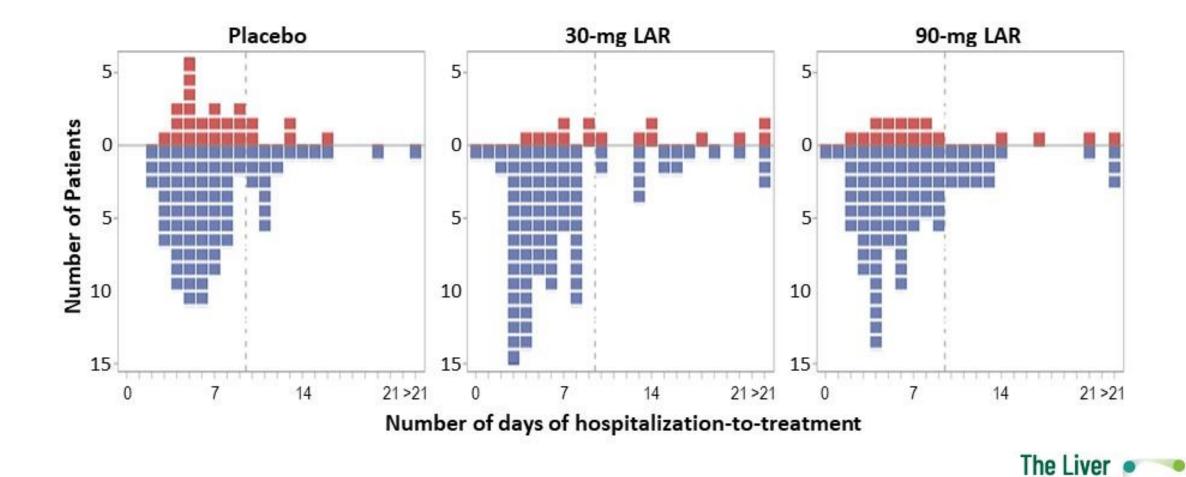
¹ Sites with enrollment <5 patients were pooled resulting in different mortality rates for placebo compared with 30 mg and 90 mg larucosterol doses. ITT includes 5 patients with missing 90-day outcome data. The analyses were adjusted by the method of multiple imputations to account for these subjects. Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

AHFIRM Trial Outcomes

- The trial did not meet statistical significance for the primary endpoint
- The key secondary endpoint, 90-day mortality, was reduced
- Larsucosterol was well tolerated (fewer TEAEs than in Placebo)
- Considerable regional differences were observed

Observed Regional Differences

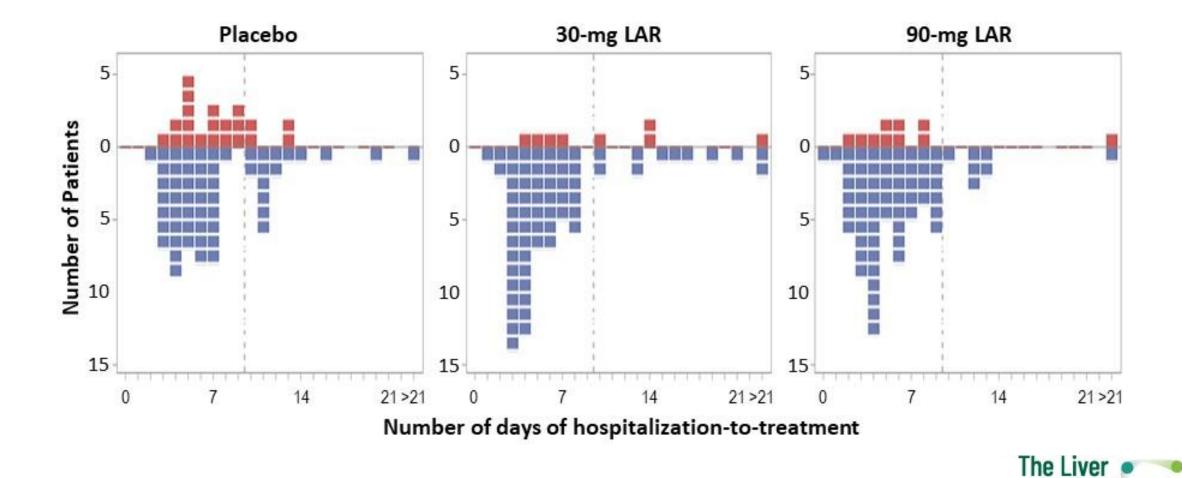
- Small sample sizes in non-US regions
- Asymmetric randomization in non-US regions
- Patient characteristics such as age & ethnicity
- Patient drinking behavior
- Days from hospital admission to the first dose of treatment


Hospitalization-to-Treatment Days by Region

Region	N	Minimum	1 st Quartile	Median	3 rd Quartile	Maximum
United States	232	1	4	5	9	58
European Union	26	4	8	13	15	19
Great Britain	8	3	7	11	18	34
Australia	41	2	6	7	9	47

Among all patients, 75% were treated <10 days of hospitalization.

Hospitalization-to-Treatment — Global Data •



Meeting*

Hospitalization-to-Treatment — US Data

.

Meeting*

Outcomes of Patients Treated in <10 Days of Hospitalization

	Global Data					
	Placebo	30-mg LAR	90-mg LAR			
Number	79	74	77			
Death (%)	20 (25.3)	7 (9.5)	13 (16.9)			
Transplant (%)	2 (2.5)	5 (6.8)	7 (9.1)			
90-day Death or Transplant p-value		0.053	0.602			
90-day Mortality p-value		0.010	0.197			
US Data						
Number	57	57	66			
Death (%)	17 (29.8%)	4 (7.0)	9 (13.6)			
Transplant (%)	2 (3.5)	5 (8.8)	7 (10.6)			
90-day Death or Transplant p-value		0.015	0.155			
90-day Mortality p-value		0.002	0.028			

Summary

- Both larsucosterol-treated groups had better 90-day survival rates than the placebo group
- One of the obvious regional differences observed was the time from hospital admission to the first dose of larsucosterol
 - The median number of days from hospital admission to the 1st dose was shortest in the US
 - Patients treated <10 days of admission had the better outcomes, especially in the 30-mg larsucosterol group

۲

Conclusions and Next Steps

- Larsucosterol is well tolerated in patients with severe AH
- Larsucosterol improves survival in patients with severe AH
- The efficacy of larsucosterol is further improved by early treatment
- The Phase 3 trial will include a requirement for treatment in <10 days after index hospital admission

Acknowledgements

We extend our thanks to the patients, their families and all participating investigators and study teams

AHFIRM Principal Investigators:

Laura Alba, Costica Aloman, Amon Asgharpour, Sumeet Asrani, Marc Bourlière, Robert Brown, Stephen Caldwell, Matt Cave, Paul Clark, Ben Da, Srinivasan Dasarathy, Janet Dearden, Ashwin Dhanda, Steve Flamm, Juan Gallegos, Daniel Ganger, Aparna Goel, Russell Goodman, Stuart Gordon, Meagan Gray, Ahmet Gurakar, Tarek Hassanein, Gene Im, Rajiv Jalan, Vandana Khungar, Kevin Korenblat, Alexander Kuo, Charles Landis, Alexandre Louvet, Gerry Macquillan, Ashwini Mehta, Fernando Membreno, Mack Mitchell, Tim Mitchell, Christophe Moreno, Kate Muller, Amanda Nicoll, Gulshan Parasher, Nikolaos Pyrsopoulos, Vikrant Rachakonda, K Gautham Reddy, Fredric Regenstein, Fedja Rochling, Don Rockey, Natasha Von Roenn, Mark Russo, Sanjaya Satapathy, Rohit Sawhney, Esperence Schaefer, Courtney Sherman, Kirti Shetty, Mitchell Shiffman, Coleman Smith, Margaret Sozio, Lance Stein, Simone Strasser, Rise Stribling, Vinay Sundaram, Norah Terrault, Thierry Thevenot, Julie Thompson, Mark Thursz, Edmund Tse, Hugo Vargas, David Victor III, Martin Weltman

This study was funded by DURECT Corporation

۲